用語はA-Z順, あいうえお順に並んでいます
- AIAIとは、Artificial Intelligenceの略で、日本語では人工知能と訳されます。一般的には、人間の言葉の理解や認識、推論などの知的行動をコンピュータに行わせる技術を指します。 AIの歴史は古く、1956年 […]
- AIエージェントAIエージェントとは、環境を認識し、特定の目標を達成するために自律的に行動するよう設計されたソフトウェアまたは物理的なエンティティです。人間のような知性を模倣し、様々なタスクを実行することができます。 AIエージェントの […]
- AIリテラシーAIリテラシーとは、人工知能(AI)に関する基本的な知識と、AIを適切に活用するための能力を指します。具体的には、以下の要素が含まれます。 1. AIの基礎知識 2. AIの活用方法 3. AIと社会 AIリテラシーを身 […]
- APIAPIは「Application Programming Interface」の略称で、アプリケーション同士が情報を交換するための仕組みです。ソフトウェア同士が通信し、データを取得したり、機能を呼び出したりするために使用 […]
- APIエンドポイントAPIにおけるエンドポイントとは APIエンドポイント は、API と通信するための接続先を指します。具体的には、特定のリソースへのアクセスを提供するURI (Uniform Resource Identifier) と […]
- APIキーAPIキーは、APIサービス提供事業者が独自に発行する認証情報です。APIを利用する際には、サービス提供事業者からAPIキーを付与され、接続時に通知する必要があります。 APIキーの役割 APIキーの種類 APIキーには […]
- APIキーの認証タイプAPIキーの認証タイプとは、APIキーを使用してAPIへのアクセスを認証する方法のことです。主な認証タイプは以下の3つです。 1. クエリパラメータ認証 APIキーをリクエストのURLクエリパラメータとして送信する方法で […]
- APIクライアントAPIクライアントとは、アプリケーションプログラムインタフェース(API)と通信するために設計されたソフトウェアコンポーネントやツールのことを指します。APIクライアントは、APIサーバーに対してリクエストを送信し、レス […]
- APIクライアントAPIクライアントの役割 現代のデジタルエコシステムにおいて、API(Application Programming Interface)はソフトウェアやサービスが相互に通信し、連携するための重要な要素です。APIサーバ […]
- APIサーバーの役割APIサーバー 現代のデジタル世界において、API(Application Programming Interface)は異なるソフトウェアやサービスがシームレスに連携するための基盤となっています。その中心に位置するのが […]
- APIメソッドAPIメソッド は、APIが提供する機能の一つ一つです。具体的には、特定の処理を実行するための命令 と、その処理に必要な パラメータ の組み合わせで定義されます。 例: この例では、getUser というメソッドを呼び出 […]
- API認証の種類:Basic認証、Bearer認証、Custom認証の違いBasic認証、Bearer認証、Custom認証は、いずれもAPIへのアクセスを認証するための方法ですが、それぞれ異なる仕組みと特徴を持っています。 相違点の一覧表 項目 Basic認証 Bearer認証 Custom […]
- Attention機構Attention機構は、ニューラルネットワークモデルが、入力データの中で重要な部分に注目できるようにする仕組みです。これは、人間の認知機能における「注意」を模倣したもので、入力データ全体を処理するのではなく、重要な部分 […]
- ChatGPTChatGPTは、OpenAIが開発した対話型AIチャットサービスです。2022年11月にリリースされ、その自然な会話と幅広い知識で瞬く間に人気を集めました。 主な機能: 活用例: 注意点: 利用方法: ChatGPTは […]
- ChatGPT PlusChatGPT Plusは、OpenAIが提供する高度なAIチャットボットサービス「ChatGPT」のプレミアム版です。無料版よりも以下の点で優れています。 1. 高度な回答 ChatGPT Plusは、無料版よりも質問 […]
- cURLコマンドcURLコマンドは、URLで指定されたリソースへのデータ転送を行うコマンドラインツールです。「Client URL」の略で、curl とも表記されます。 主な機能 特徴 使用例 学習リソース 関連コマンド 補足
- DINODINOは、Facebook AIが開発した、ラベルなし画像データでVisionTransformerを事前学習するためのシステムです。従来の教師あり学習とは異なり、ラベルなしデータのみを使用することで、画像の特徴表現を […]
- EmbeddingLLMにおける埋め込み(Embedding) LLMにおける埋め込みとは、単語やフレーズを、意味的に近い単語が近いベクトルになるように、高次元空間に配置する技術です。これは、単語の意味を数値的に表現する方法であり、LLM […]
- FAISS(Facebook AI Similarity Search)FAISS(Facebook AI Similarity Search)は、Facebook AIが開発したオープンソースのライブラリで、大規模なベクトルデータセットから類似性に基づいて最も近いアイテムを効率的に検索する […]
- Google EarthGoogle Earthは、衛星画像や航空写真などを組み合わせて地球儀のように表示するソフトウェアです。まるで地球を手に取っているかのように、自由に回転させたり、拡大縮小したりすることができます。 Google Eart […]
- Google Earth ProGoogle Earth Pro は、無料の Google Earth よりも高度な機能を備えたバージョンです。 主な機能は以下の通りです。 Google Earth Pro は、個人での利用は無料です。 ただし、優先的 […]
- Google MapsGoogle Mapsは、Googleによって提供される包括的な地図とナビゲーションサービスです。多様な機能と広範な用途で世界中のユーザーに利用されています。以下に、Google Mapsの主な機能と特徴を詳しく説明しま […]
- GoogleビジネスプロフィールGoogleビジネスプロフィール(旧称:Googleマイビジネス)は、Google検索やGoogleマップで検索された時に表示されるビジネス情報を、オーナー自身が管理できる無料のサービスです。 主な機能 メリット 利用方 […]
- GPTGPTはGenerative Pre-trained Transformerの略称で、OpenAIが開発した大規模言語モデルです。Transformerと呼ばれるニューラルネットワークアーキテクチャに基づいており、大量の […]
- GPTGPTは「Generative Pre-trained Transformer」の略で、OpenAIが開発した大規模言語モデルです。日本語では「生成可能な事前学習済み変換器」と訳されます。 GPTは、大量のテキストデータ […]
- Groq Inc.概要 Groq Inc.は、2016年に設立されたAIスタートアップ企業です。カリフォルニア州マウンテンビューに本社を置き、約100人の従業員がいます。Groqは、AI処理を高速化するための独自のLPU (Learnin […]
- HTTPリクエストHTTPリクエスト(HTTP Request)とは、クライアントがサーバーに対して情報を要求したり、データを送信したりするためのメッセージのことです。HTTP(Hypertext Transfer Protocol)は、 […]
- ImageNetImageNetは、物体認識ソフトウェアの研究で用いるために設計された大規模な画像データベースです。1400万枚を超える画像に手作業でアノテーションを行い、画像にどのような物体が写っているかを示しています。また、100万 […]
- JSONJSON は、JavaScript Object Notation の略称で、軽量なデータ交換フォーマットです。 JavaScript のオブジェクト表記法 をベースに、人間が読みやすく、機械が処理しやすいように設計され […]
- LangChainLangChainとは、大規模言語モデル(LLM)を活用してアプリケーションを開発するためのオープンソースライブラリです。特に、GPT-3やChatGPTなどのLLMを効率的に利用するための機能を提供します。LangCh […]
- Laplacian of Gaussian (LoG) メソッド概要 LoG メソッドは、画像処理におけるエッジ検出によく用いられる手法です。ガウスフィルタとラプラシアンフィルタを組み合わせることで、エッジを強調しながらノイズの影響を抑えることができます。 LoG メソッドの動作 L […]
- LLMLLMは「Large Language Model」の略で、日本語では「大規模言語モデル」と呼ばれます。これは、大量のデータとディープラーニング技術を用いて構築された言語モデルです。 従来の言語モデルと比べ、LLMは以下 […]
- LPULPU は、Learning Processing Unit の略称です。これは、Groq Inc. が開発した人工知能 (AI) 処理に特化したプロセッサです。従来の GPU に比べ、AI 処理速度を大幅に向上させるこ […]
- MEO(Map Engine Optimization)MEOとは「Map Engine Optimization」の略で、日本語では「マップエンジン最適化」という意味です。これは、Googleマップなどの地図アプリで特定のキーワード検索をした際に、自社の店舗情報を上位に表示 […]
- OAuthOAuthは、Open Authorizationの略称で、インターネット上で複数のサービス間での認証や情報共有を安全かつ簡単に実現するためのオープンスタンダードプロトコルです。 従来、異なるサービス間でユーザー情報を共 […]
- OpenAIOpenAIは、2015年に設立された非営利研究団体です。イーロン・マスク氏、サム・アルトマン氏、ピーター・ティール氏らによって設立されました。 OpenAIの目標は、「人類全体に利益をもたらすような人工知能(AI)の実 […]
- OpenAPIOpenAPIは、WebサービスのAPI仕様を記述するための言語非依存のオープンな規格です。以前はSwaggerと呼ばれていましたが、2016年に正式名称がOpenAPIに変更されました。 OpenAPIの主な特徴は以下 […]
- OpenAPIOpenAPIは、RESTful APIを記述するための仕様で、APIの設計、開発、運用を簡素化し、標準化するためのツールです。以前はSwaggerとして知られていましたが、OpenAPI Initiative(OAI) […]
- RAGRAGとは、Retrieval Augmented Generationの略で、日本語では「検索拡張生成」と訳されます。これは、**大規模言語モデル(LLM)に外部の知識ベース(データベース)**を組み合わせることで、よ […]
- REST APIREST APIは、Representational State Transfer の略称で、Webサービスで利用されるAPIの一種です。リソース指向のアーキテクチャに基づいて設計されており、以下の6つの原則に基づいてい […]
- Scaled Dot-Product AttentionScaled Dot-Product Attentionは、Transformerモデルにおける注意機構(Attention Mechanism)のコア部分であり、自然言語処理や画像処理などで広く利用されています。このメ […]
- SimCLRSimCLR(Simple Framework for Contrastive Learning of Visual Representations)は、自己教師付き学習(self-supervised learning […]
- SwaggerSwaggerは、OpenAPI Initiative が策定した RESTful API の仕様を記述するためのオープンソース仕様です。以前はSwaggerと呼ばれていましたが、2016年に正式名称がOpenAPIに変 […]
- TransformerTransformerは、2017年にGoogle Researchによって提案されたニューラルネットワークアーキテクチャです。従来のRNN(Recurrent Neural Network)と比較して、以下の特徴を持ち […]
- Vision Transformerビジョン・トランスフォーマーとは? ビジョン・トランスフォーマー(Vision Transformer、ViT)は、画像認識用に設計されたニューラルネットワークのアーキテクチャです。従来の画像認識モデルである畳み込みニュ […]
- Web APIWeb APIは、Web上で提供されるAPIです。Webブラウザや他のアプリケーションから、HTTP/HTTPS通信を通じてデータや機能にアクセスすることができます。 Web APIの仕組み Web APIは、クライアン […]
- WebhookWebhook(ウェブフック)とは、特定のイベントが発生したときに、指定されたURL(エンドポイント)に対してHTTPリクエストを送信する仕組みです。これはリアルタイムでデータを通知したり、連携したシステム間でイベントを […]
- YAMLYAMLは「YAML Ain’t Markup Language」の略で、構造化データやオブジェクトを文字列にシリアライズするためのデータ形式です。 日本語では「YAMLはマークアップ言語ではない」という意味 […]
- YAMLYAML(YAML Ain’t Markup Language)は、人間にとって読みやすく、データのシリアライゼーションフォーマットとして広く使用されるデータフォーマットです。YAMLは主に設定ファイルやデー […]
- アーキテクチャITにおける「アーキテクチャ」とは、システムやソフトウェアの設計や構造を指す概念です。これは、システムがどのように構成され、相互にどのように連携するか、また、特定の要件を満たすためにどのように機能するかを体系的に表現した […]
- アテンション機構アテンション機構は、ニューラルネットワークが入力データのどの部分に注目すべきかを動的に特定する仕組みです。人間の認知における「注意」の働きを模倣したものであり、入力データの中で重要な部分に焦点を当てることで、より精度の高 […]
- アラン・チューリングアラン・チューリング (Alan Mathison Turing) アラン・チューリング (Alan Mathison Turing) は、イギリスの数学者、論理学者、計算機科学者であり、人工知能の父と称される人物です。 […]
- イーロン・マスク(Elon Musk)イーロン・マスク (Elon Musk) は、南アフリカ生まれのアメリカ人実業家、投資家、エンジニアです。彼は、以下の4つの著名な企業の創業者であり、CEOを務めています。 1. テスラ (Tesla) 2. スペースX […]
- イリヤ・サツケバー (Ilya Sutskever)イリヤ・サツケバー (Ilya Sutskever) は、イスラエル出身のカナダ人コンピュータ科学者であり、人工知能 (AI) 研究者です。彼は、以下の2つの著名な組織で重要な役割を果たしました。 1. OpenAI 2 […]
- インサイトインサイトとは、日本語で「洞察」や「発見」という意味を持つ言葉です。マーケティングにおけるインサイトとは、消費者の行動や意識の背後にある潜在的なニーズや欲求を指します。 消費者は、自分自身でも気づいていない潜在的なニーズ […]
- エッジ検出フィルタエッジ検出フィルタは、画像処理におけるエッジ検出フィルタの一種です。画像の各画素に対して、その画素とその周辺の画素値を用いて、エッジ部分の画素値を強調する方法です。 エッジ検出フィルタの種類 代表的なエッジ検出フィルタは […]
- エンコーダ(in Transformer)LLMにおけるエンコーダは、Transformerと呼ばれるニューラルネットワークアーキテクチャの一部です。Transformerは、エンコーダとデコーダという2つの主要な部分から構成されます。 エンコーダの役割 エンコ […]
- エンコーダ(自然言語処理における)自然言語処理におけるエンコーダは、入力された文章や単語のシーケンスを、ニューラルネットワークを使ってベクトルに変換する役割を持つモジュールです。このベクトルは、文章の意味や特徴を表現したものとして、機械翻訳や要約、質問応 […]
- エンコーディング自然言語処理におけるエンコーディングは、人間が使用する自然言語(日本語、英語など)を、コンピュータが処理しやすい形式に変換するプロセスを指します。具体的には、単語や文章を数字の羅列であるベクトルに変換することで、コンピュ […]
- エンジニアリングエンジニアリングとは、科学技術を応用して、物品を生産したり、システムを構築したりする技術、およびその学問です。日本語では「工学」と訳されます。 エンジニアリングの役割 エンジニアリングは、社会の様々なニーズに応えるために […]
- エンドポイントエンドポイントとは、ネットワークシステムに接続する物理的なデバイスのことを指します。具体的には、以下のようなものが含まれます。 エンドポイントは、ネットワークを通じて他のエンドポイントと通信し、情報交換を行うことができま […]
- ガウシアンフィルタガウシアンフィルタは、画像処理における平滑化(スムージング)フィルタの一種です。ガウス関数に基づいた重み付けを行い、画像のノイズを低減するために使用されます。 ガウシアンフィルタの動作 ガウシアンフィルタの利点 ガウシア […]
- カプセル化カプセル化(encapsulation)は、オブジェクト指向プログラミングにおいて、データとそれらを操作する処理を一つのまとまりとして封装し、外部からのアクセスを制限するという概念です。 イメージとしては、薬のカプセルの […]
- クラスタリングクラスタリングとは、データ間の類似度に基づいてデータをグループ分けする手法です。教師なし学習の一種であり、事前にデータの分類ラベルが与えられていない状況で、データの類似性に基づいてグループ分けを行います。 クラスタリング […]
- コーパスコーパスとは、言語研究のために収集された、自然言語の文章や会話の大規模なデータセットです。辞書や文法書などの言語資源とは異なり、実際に使われている言語のデータを集めたものである点が特徴です。 コーパスの種類 コーパスには […]
- コサイン類似度コサイン類似度とは、2つのベクトルの向きの類似度を測る指標です。ベクトルの内積を用いて定義されます。 コサイン類似度の定義 2つのベクトル a と b のコサイン類似度 cosθ は以下の式で求められます。 LaTex記 […]
- サム・アルトマン(Sam Altman)サム・アルトマン (Sam Altman) は、アメリカ合衆国の起業家、投資家、プログラマーです。彼は以下の2つの著名な組織で重要な役割を果たしました。 1. OpenAI 2. Yコンビネータ アルトマンの経歴 アルト […]
- システムプロンプトシステムプロンプト(system prompt)とは、AIや機械学習モデルに対して提供される初期の指示や設定情報のことです。このプロンプトは、モデルがどのような役割を果たすか、どのような口調やスタイルで回答するか、どのよ […]
- シリアライズ構造化データやオブジェクトを文字列にシリアライズするとは、データをコンピュータが処理しやすい形式に変換することです。 具体的には、以下の手順で行われます。 シリアライズには、さまざまな方法があります。 シリアライズされた […]
- ステップ関数ステップ関数は、最も単純な活性化関数の一つであり、Heaviside関数や指示関数とも呼ばれます。以下の式で定義されます。 この関数は、入力値が閾値と呼ばれる値を超えると1を出力し、それ以外は0を出力します。 グラフ ス […]
- セグメンテーションセグメンテーションとは、デジタル画像を複数のセグメントまたは領域に分割するプロセスであり、画像の各ピクセルが特定のオブジェクトまたはクラスに属するようにします。 簡単に言うと、画像はピクセルの集まりであり、セグメンテーシ […]
- ソフトマックス関数ソフトマックス関数(softmax function)は、ニューラルネットワークの出力層でよく用いられる活性化関数です。 役割 定義 K個の実数値からなるベクトル z を入力として受け取り、入力の指数に比例する K 個の […]
- ダートマス会議ダートマス会議は、1956年7月から8月にかけてアメリカ合衆国ニューハンプシャー州のダートマス大学で開催された会議で、人工知能(AI)という学術研究分野を確立した会議として知られています。 ダートマス会議の目的: 当時、 […]
- ダミーデータダミーデータとは、実際のデータと似た構造と特徴を持つ模擬的なデータです。 例えば、ユーザーの個人情報、商品情報、売上データなど、実際のデータと同じような項目を持つデータですが、内容は架空のもので構成されています。 ダミー […]
- チューリングテストチューリングテストは、イギリスの数学者アラン・チューリングが1950年に提唱した、機械が人間と同等の知能を持っているかを判断するためのテストです。 テストの内容 チューリングテストでは、人間と機械が自然言語による会話を行 […]
- デコーダLLMにおけるデコーダは、エンコーダによって生成された抽象的な表現を、具体的な出力に変換するニューラルネットワークアーキテクチャの一部です。Transformerと呼ばれるアーキテクチャにおいて、エンコーダと対になる重要 […]
- デバッグデバッグとは、ソフトウェアやプログラムの不具合(バグ)を見つけ出し、修正する過程のことを指します。以下にデバッグの具体的な内容と手法について説明します。 デバッグの内容 デバッグの手法 デバッグの重要性 デバッグはソフト […]
- テンプレートエンジンテンプレートエンジンとは、テンプレートと呼ばれる雛形とデータモデルを組み合わせて、成果ドキュメントを出力するソフトウェアです。 テンプレートエンジンを使うと、以下のメリットがあります。 テンプレートエンジンには、さまざま […]
- ニューラルネットワークニューラルネットワークとは、人間の脳神経系の構造を模倣した人工知能(AI)の一種です。生物の脳神経細胞(ニューロン)を人工的な数式モデルで表現し、それらをネットワーク状に接続することで、学習(エンコーダ)や推論(デコーダ […]
- パープレキシティ(Perplexity)言語モデルにおけるパープレキシティとは 言語モデルにおいて、パープレキシティ (Perplexity) は、モデルが与えられたテキストデータに対してどれほど適切な確率を割り当てることができるかを評価する指標です。簡単に言 […]
- パターン認識パターン認識とは? パターン認識とは、画像、音声、テキストなどのデータから、規則性や意味を持つパターンを見つけ出し、分類・解釈する技術です。 具体的には、以下の処理を行います。 パターン認識の応用例 パターン認識は、様々 […]
- ハルシネーションLLM(大規模言語モデル)におけるハルシネーションとは、モデルが訓練データに基づいていない内容を生成してしまう現象を指します。これは、LLMが学習データのパターンを過剰に一般化し、実際には存在しないものを作り出してしまう […]
- ファイルツリーファイルツリーとは、コンピュータやソフトウェアのファイルシステムにおいて、ファイルやフォルダーの階層構造をツリー状に視覚的に表示する仕組みです。これにより、フォルダーやファイルの整理が一目でわかり、ナビゲートが容易になり […]
- ファインチューニングファインチューニングとは、既に学習済みのモデルを特定のタスクやデータセットに適応させる手法です。具体的には、以下の2つのステップで行われます。 この新しいデータによって、モデルは特定のタスクに特化した知識を獲得します。 […]
- フィードフォワードニューラルネットワーク(FFNN)**フィードフォワードニューラルネットワーク(FFNN)**は、ニューラルネットワークの中でも最も基本的な構造であり、順伝播型ニューラルネットワークとも呼ばれます。 特徴 動作 例 利点 欠点 FFNNは、画像認識、音声 […]
- プライバシーポリシープライバシーポリシーとは、ウェブサイトやアプリなどのサービス提供者が、ユーザーから収集する個人情報(氏名、住所、メールアドレスなど)の取り扱いについて定めた規範です。具体的には、以下の内容が記載されます。 サービス提供者 […]
- プロンプトプロンプト(Prompt)とは、対話形式のシステムにおいて、ユーザーが入力する指示や質問のことです。具体的には、以下のような場面で使われます。 プロンプトは、システムがユーザーに何を要求しているかを伝えるためのものです。 […]
- プロンプトエンジニアリングプロンプトエンジニアリングとは、生成AIモデルに適切な指示を与えることで、より良い出力を得るための技術です。生成AIモデルは、テキストや画像、コードなど様々な形式のデータを生成することができますが、その出力の質は与える指 […]
- ベクトルデータベースベクトルデータベースは、テキストや画像などのデータをベクトル(数値の集合)に変換して格納し、コサイン類似度などの指標を用いて類似検索を行うデータベースです。近年、自然言語処理や画像認識などの分野で注目を集めており、様々な […]
- ベクトル検索ベクトル検索(ベクトルサーチ)とは、データポイントを高次元のベクトル空間にマッピングし、そのベクトルの類似性を基に検索や照合を行う技術です。この方法は特に、従来のキーワード検索では難しい、意味的な類似性を捉えるために用い […]
- マークアップ言語マークアップ言語とは、文書の構造や見栄えを指定するための言語です。文書にタグと呼ばれる記号を埋め込むことで、コンピュータに文書の構造や意味を伝えることができます。 主な用途 代表的なマークアップ言語 マークアップ言語のメ […]
- マークダウン言語マークダウン言語は、プレーンテキスト形式で文書を記述し、見出しや太字、箇条書きなどの装飾を簡単に施せる軽量マークアップ言語です。HTMLなどの複雑なタグを覚える必要がなく、直感的な記法で文書を作成できるため、初心者でも扱 […]
- マルチヘッドアテンションマルチヘッドアテンション(Multi-Head Attention)とは、Transformerモデルで提案されたアテンション機構の一部であり、複数のアテンションヘッドを並列に実行することで、系列中の各トークン表現を変換 […]
- マルチモーダルマルチモーダル とは、複数の種類の情報 をまとめて扱うことを意味します。主に AI の分野で用いられ、画像、音声、テキスト、センサ情報など、異なる種類のデータを組み合わせることで、より高度な情報処理を実現します。 例 メ […]
- モーダルモーダルとは、ユーザーインターフェースにおける用語で、ユーザーが特定の操作を完了するまで、他の操作を受け付けない状態を指します。 具体的には、以下のような状況を指します。 モーダルは、ユーザーの注意を特定の操作に集中させ […]
- ヤン・ルカン (Yann LeCun)ヤン・ルカン (Yann LeCun) は、フランス出身の計算機科学者であり、人工知能 (AI) 研究者です。彼は、畳み込みニューラルネットワーク (CNN) の主要な創始者の一人であり、コンピュータビジョン、画像認識、 […]
- ラプラシアンフィルタラプラシアンフィルタは、画像処理におけるエッジ検出フィルタの一種です。画像の2階微分を計算することで、エッジ部分の画素値を強調します。 ラプラシアンフィルタの動作 ラプラシアンフィルタの利点 ラプラシアンフィルタの欠点 […]
- ローカル検索ローカル検索とは、ユーザーの現在地や検索キーワードに関連する地域情報に基づいて、検索結果を表示する仕組みです。従来の検索エンジンとは異なり、ユーザーの所在地や地域情報に基づいて検索結果をカスタマイズするため、より関連性の […]
- 事前学習事前学習とは、ニューラルネットワークを学習させる際に、まず別のタスクで学習済みのモデルを利用する手法です。その後、そのモデルを特定のタスクに適用できるように、一部のパラメータのみを調整します。 事前学習には、以下のメリッ […]
- 人工知能の歴史人工知能 (AI) の歴史は古く、古代ギリシャまで遡ります。しかし、AIという言葉が誕生したのは1956年、ダートマス会議においてです。 AI研究の主要な時代区分 AI研究における重要な出来事 AI研究の課題 AIの未来 […]